博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Prim和Kruskal算法
阅读量:4945 次
发布时间:2019-06-11

本文共 4050 字,大约阅读时间需要 13 分钟。

1. Prim算法

1.1 概览

普里姆算法Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点英语Vertex (graph theory),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克英语Vojtěch Jarník发现;并在1957年由美国计算机科学家罗伯特·普里姆英语Robert C. Prim独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

1.2 算法简单描述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

 

下面对算法的图例描述

图例 说明 不可选 可选 已选(Vnew
 

此为原始的加权连通图。每条边一侧的数字代表其权值。 - - -

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 C, G A, B, E, F D
 

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。 C, G B, E, F A, D
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 C B, E, G A, D, F
 

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。E最近,因此将顶点E与相应边BE高亮表示。 C, E, G A, D, F, B
 

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。 C, G A, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG G A, D, F, B, E, C

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 A, D, F, B, E, C, G

1.3 简单证明prim算法

反证法:假设prim生成的不是最小生成树

1).设prim生成的树为G0

2).假设存在Gmin使得cost(Gmin)<cost(G0)   则在Gmin中存在<u,v>不属于G0

3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)

4).这与prim每次生成最短边矛盾

5).故假设不成立,命题得证.

1.4 算法代码实现

#define MAX  100000#define VNUM  10+1                                             //这里没有ID为0的点,so id号范围1~10int edge[VNUM][VNUM]={
/*输入的邻接矩阵*/};int lowcost[VNUM]={
0}; //记录Vnew中每个点到V中邻接点的最短边int addvnew[VNUM]; //标记某点是否加入Vnewint adjecent[VNUM]={
0}; //记录V中与Vnew最邻近的点void prim(int start){ int sumweight=0; int i,j,k=0; for(i=1;i

1.5 时间复杂度

这里记顶点数v,边数e

邻接矩阵:O(v2)    邻接表:O(elog2v)

2. Kruskal算法

2.1 概览

Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

2.2 算法简单描述

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中

                if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中

                                         添加这条边到图Graphnew

图例描述:

首先第一步,我们有一张图Graph,有若干点和边 

 

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图

 

 

 

在剩下的变中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。

最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:

 

 

 

2.3 简单证明Kruskal算法

对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。

归纳基础:

n=1,显然能够找到最小生成树。

归纳过程:

假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。

我们证明T'+{<u,v>}是G的最小生成树。

用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。

由数学归纳法,Kruskal算法得证。

2.4 代码算法实现

typedef struct          {            char vertex[VertexNum];                                //顶点表             int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表             int n,e;                                               //图中当前的顶点数和边数         }MGraph;  typedef struct node  {      int u;                                                 //边的起始顶点       int v;                                                 //边的终止顶点       int w;                                                 //边的权值   }Edge; void kruskal(MGraph G)  {      int i,j,u1,v1,sn1,sn2,k;      int vset[VertexNum];                                    //辅助数组,判定两个顶点是否连通       int E[EdgeNum];                                         //存放所有的边       k=0;                                                    //E数组的下标从0开始       for (i=0;i
%d, %d",E[j].u,E[j].v,E[j].w); k++; for (i=0;i

时间复杂度:elog2e  e为图中的边数

转载于

转载于:https://www.cnblogs.com/RB26DETT/p/11091271.html

你可能感兴趣的文章
课后作业-阅读任务-阅读提问-3
查看>>
Asp.Net Core 中利用QuartzHostedService 实现 Quartz 注入依赖 (DI)
查看>>
细说sqlserver索引及SQL性能优化原则
查看>>
一般数据库增量数据处理和数据仓库增量数据处理的几种策略
查看>>
centos6.5适用的国内yum源:网易、搜狐
查看>>
视频直播技术(三):低延时直播经验总结
查看>>
Application failed to start because it could not find or load the QT platform plugin “windows”
查看>>
python合并多表或两表数据
查看>>
第一个python作业题目以及代码
查看>>
Windows Azure 社区新闻综述(#71 版)
查看>>
Windows XP 的最高版本 .net framework 安装
查看>>
本机不装Oracle,使用plsql连接远程Oracle的方法
查看>>
先说一下JS的获取方法,其要比JQUERY的方法麻烦很多,后面以JQUERY的方法作对比。...
查看>>
mysql中间件研究(Atlas,cobar,TDDL)
查看>>
jpa SQL Error: 17006, SQLState: null
查看>>
新的一年来了,先看一看自己的编程能力吧!
查看>>
什么是MVC
查看>>
新建web project不自动生成web.xml解决方案
查看>>
如何快速访问MSDN某一个类或方法的帮助文档
查看>>
SqlServer 删除重复记录
查看>>